An Extended Membrane System with Monodirectional Tissue-like P Systems and Enhanced Particle Swarm Optimization for Data Clustering

نویسندگان

چکیده

In order to establish a highly efficient P system for resolving clustering problems and overcome the computation incompleteness implementation difficulty of systems, an attractive membrane system, integrated with enhanced particle swarm optimization (PSO) based on environmental factors crossover operators distributed parallel computing model monodirectional tissue-like systems (MTP), is constructed proposed, which simply named ECPSO-MTP. proposed ECPSO-MTP, two kinds evolution rules objects are defined introduced rewrite modify velocity in different elementary membranes. The updating uses partitioning information randomly replaces global best improve performance operator position given other probability accomplished through hybridization membranes reject randomness. structure ECPSO-MTP abstracted as network structure, exchange resource sharing between by evolutional symport promoters MTP, including forward backward communication rules. mechanisms executed repeatedly iteration. At last, comparison experiments, conducted eight benchmark datasets from artificial UCI Machine Learning Repository image segmentation BSDS500, demonstrate effectiveness

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clustering of Fuzzy Data Sets Based on Particle Swarm Optimization With Fuzzy Cluster Centers

In current study, a particle swarm clustering method is suggested for clustering triangular fuzzy data. This clustering method can find fuzzy cluster centers in the proposed method, where fuzzy cluster centers contain more points from the corresponding cluster, the higher clustering accuracy. Also, triangular fuzzy numbers are utilized to demonstrate uncertain data. To compare triangular fuzzy ...

متن کامل

Fuzzy Particle Swarm Optimization Algorithm for a Supplier Clustering Problem

This paper presents a fuzzy decision-making approach to deal with a clustering supplier problem in a supply chain system. During recent years, determining suitable suppliers in the supply chain has become a key strategic consideration. However, the nature of these decisions is usually complex and unstructured. In general, many quantitative and qualitative factors, such as quality, price, and fl...

متن کامل

An Analysis of Particle Swarm Optimization with Data Clustering-Technique for Optimization in Data Mining

Data clustering is a popular approach for automatically finding classes, concepts, or groups of patterns. Clustering aims at representing large datasets by a fewer number of prototypes or clusters. It brings simplicity in modeling data and thus plays a central role in the process of knowledge discovery and data mining. Data mining tasks require fast and accurate partitioning of huge datasets, w...

متن کامل

Data clustering using particle swarm optimization

This paper proposes two new approaches to using PSO to cluster data. It is shown how PSO can he used to find the centroids of a user specified number of clusters. The algorithm is then extended to use K-means clustering to seed the initial swarm. This second alga. rithm basically uses PSO to refine the clusters formed by K-means. The new PSO algorithms are evaluated on six data sets, and compar...

متن کامل

fuzzy particle swarm optimization algorithm for a supplier clustering problem

this paper presents a fuzzy decision-making approach to deal with a clustering supplier problem in a supply chain system. during recent years, determining suitable suppliers in the supply chain has become a key strategic consideration. however, the nature of these decisions is usually complex and unstructured. in general, many quantitative and qualitative factors, such as quality, price, and fl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied sciences

سال: 2023

ISSN: ['2076-3417']

DOI: https://doi.org/10.3390/app13137755